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ABSTRACT

The reconstruction principle of inductive
inference is based on reconstructability theory
and offers an unorthodox approach to inductive
reasoning, which has applications in diverse
fields such as pattern classification, expert sys-
tems, generalized rule induction and dis-
tributed sensor integration. Reconstructability
theory emphasizes the relationship between
parts and wholes, the relationships between
systems and subsystems, and more specifically,
the relationship between states and substates,
The two problems in reconstructability theory
are referred to as the reconstructability prob-
lem and the identification problem. In this
paper, we consider reconstruction and identifi-
cation of possibilistic systems when informa-
tion is not available in its entirety. We intro-
duce the concept of the partial reconstruction
hypothesis, and compute the unbiased recon-
struction  and the reconstruction families
implied solely by the partial information. A
possibilistic version of the probabilistic algo-
rithm is proposed to determine the unbiased
reconstruction, and the reconstruction families
have been identified by transforming the possi-
bilistic system constraints to max-min fuzzy
relation equations.

Key Words: Possibilistic system, Fuzzy Rela-
tion Equations, Reconstructability Prob-
iem, Identification Problem, Reconstruc-
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tion Family, Reconstruction Hypothesis,
Structure System, Reconstruction Princi-
ple of Inductive Inference.

1. Introduction

The reconstruction principle of inductive
inference is based on reconstructability theory
and offers an unconventional approach to
inductive reasoning, which has been applied to
diverse ficlds such as paltern classification,
expert systems, generalized rule induction and
distributed sensor integration [22, 25, 37].
Reconstructability theory emphasizes the rela-
tionship between parts and wholes, the rela-
tionships between systems and subsystems,
and more specifically, the relationship between
states and substates. Reconstructability theory
relates to two types of problems, namely, the
reconstruction problem and the identification
problem. The former deals with the process of
reconstructing a given system under a given
criterion from the knowledge of its subsystems
and, during this process, identifying those sub-
systems that are instrumental in the reconstruc-
tion. The latter allows the identification of an
unknown system from the knowledge of its
subsysiems. The solution procedures associ-
ated with these two problems are referred 1o as
Reconstructability Analysis, abbreviated as
RA. Origins of RA can be waced to Ashby’s
work on constraint analysis in the early sixtics
[1, 27], though a formal framework of RA did
not exist until the late seventies [2, 23-24] and
early eighties [3-6]. Since the advent of recon-
structability theory, significant efforts have
been directed towards rescarch in this area,
resulting in the emergence of a variety of new
algorithms and applications. Solution proce-
dures aimed at these two problems have heen
developed and implemented [9-10, 13-22,
25-28, 30-31, 38]. In this section, we shall



introduce the basic terminology and the pre-
liminary concepts in reconstructability theory
[4, 18] and describe the motivation for our
research,

1.1 Systems and States

Intvitively, a system is simply a data set
which consists of "the tuples of the form
<V, Va0, v, f >, where Vi V2,000, V, are
variables or attributes and f is a function
defined over these variables. This function may
be a probability distribution function, a possi-
bilistic behavior function, a selection function,
a fuzzy set membership function or any arbi-
trary or non-linear function. A state in a system
is simply a combination of the attribute values
in a given order, Formally, a system is defined
a8 a six-tuple

B=(V,W,5,A,Q, f) (LD

where V= {v;lie 1,2,...,n) is a sel of vari-
ables; W = {vj!je{l,z,..,m},mSn} is a
family of state sets; s: V->W is an onto map-
ping which assigns to each variable in V, one
state set from W; A = s(vxs(vy)x - Xs(v,) is
the set of all potential aggregate states; Q is a
set of real numbers; and JiA—>Q is a system
function which represents the information
regarding the aggregate states of the system,

1.2 Subsystems and Substates

A subsystem is a data set whose variables
form a proper subsct of the variables of the
Syslem and a function g is defined over vari-
ables in the subset. It consists of the tuples of
the  form <UypUg, ..Uy g>  where
{wy,up,... 0} c {vi,va,...,v,}. A substate
in a subsystem is a combination of attribute
values present in that subsystem in a given
order. The concept of a system and subsystem
is a relative one. A System can be regarded as a
subsystem of a larger system and a subsystem
can be regarded as a system (i.e., a supersys-
tem) of a smaller system. Formally, given a
system as defined above, a collection of a total
of g subsystems, together called a structure
Syslem or a reconstruction hypothesis, is
defined as

S:[kszf(kv'kw. J:S’ch!kQ"kf)l
kefl,2,...,q)} (1.2)
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if and only if, for each k, following condition -
are satisfied:

(1) *vev,

(2) *WCW such that %5 ig onto,

3) stvoitw such that "s(vi) =s(v;) fo
each v;e ¥V,

4 *A= Xy ks(v),

5) *o=¢,

©) *f=[fl*v.

Elements of set § are referred 1o as subsystem:
of system B. [fl *V] is called the projectior.
of f on *V, which considers only the variables
in *V. Essentially, £ ¥ V1 is a mapping from,

substates in *A to Q, that i, |

FEWE % s (3

such that
VI = gt fedla > ), (13

where o > A means B is a substate of & (or a
is a superstate of 8), and £ is determined by
the nature of function f. Note that it is not
always possible to derive subsystems using
projection functions in the real world where
different subsystems may be observed by dif-
ferent teams of observers or by using different
experiments. This gives rise 10 the issues of
local and global inconsistencies in the data,

1.3 Reconstructability Problem

Let B be a behavior system defined by
(1.1). Let § be a structure system defined by
(1.2). Sissaidtobea meaningful reconstruc-
tion hypothesis of B if and only if it contains
the subsystems of B such that

U *V =V, and (L.4)
ke N,
(forall jke No) (Ve *V=j=k).  (LS)

Condition (1.4) is called the covering condi-
tion and guarantees that all variables of B are
included in §. This means that the reconstruc-
tion of B from § is logically possible, Condi-
tion (1. 5) is called the irredundancy condition
and ensures that S contains no redundant infor-
mation,.
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1.4 Identification Problem

Let § be a structure system defined by
(1.2). Then § is said to be a reconstruction
hypothesis (hypothetical representation) of an
unknown overall system B provided the fol-
lowing six conditions hold true:

(1) v=U ty,
keN,

(2) W= U *w,
kENq

(3) s: VoW such that s(v;) ="*s(v;) for each
ke N

@) A= x50,

(5) Q@=*QforeachkeN,,

(6) f:A—>Q such that [fl*V]=*f for
each ke N,.

It is obvious that B, which is unknown, should
be compatible with S. Potentially, there will be
more than one overall systems compatible with
§. The set of all these systems is called
reconstruction family of §, denoted by Bg. Let
Fs be the set of all system functions corre-
sponding to the overall systems in Bg. Since
the elements in Fg and B are in one-to-one
correspondence, and the elements of By differ
only in system functions, By and Fg can inter-
changeably be referred to as reconstruction
family.

As discussed previously, if the bchavior
functions { * £} of a reconstruction hypothesis
are projections of an overall behavior function
f, then the reconstruction hypothesis is consis-
tent. A reconstruction hypothesis is said to be
locally consistent if the following condition,
called local consistency condition, is satisfied:

( for all j, ke N,)
viiventvi=tvdivadvn. )

A reconstruction hypothesis S is said to be
globally consistent if the reconstruction family
of § is non-empty. It is usually the case that the
reconstruction hypotheses satisfy local consis-
tency condition (1.6) as well as the covering
condition (1.4) and the irredundancy condition
(1.5).
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1.5 Advances in Reconstructability Analysis

The discipline of reconstructability analy-
sis is well developed for probabilistic behavior
functions. Of greater significance has been
Jones” work [13-21). Motivated by Lewis’
study [29] on approximation of probability dis-
tributions to reduce storage requirements,
Jones [13-15] provided the alternative methods
of solution using minimal and limited informa-
tion. He introduced the concept of null exten-
sion and k-system theory, and extended the
previous results for the case when system func-
tions were allowed to be any non-linear func-
tion, and this was accomplished only by means
of the limited independent information [13-18].
He further generalized these results to hold
good for incomplete and arbitrary data [19].
The concept of null extension and the advent
of k-system theory has greatly extended the
realm of RA methodology. By transforming
any non-linear system to a dimensionless sys-
tem, it is possible for RA to cover most non-
linear functions. Using the concept of null
extension, it is possible to divide the whole
stale space into disjoint equivalent classes and
o proceed further by just picking only one
state from each class. We use the similar con-
cept to study possibilistic systems with incom-
plete information.

The principle of maximum uncertainty is
used 10 compute the unbiased reconstruction
from possibilistic structure systems. Cavallo
and Klir [6) considered the reconstruction of
possibilistic behavior systems, Using the prin-
ciple of maximum ambiguity, which was later
revised to the principle of U-uncertainty, they
introduced methods for computing the unbi-
ased reconstruction and reconstruction families
of possibilistic structure systems. They proved
that a possibilistic join procedure, the one simi-
lar 1o the probabilistic one, computes the unbi-
ased reconstruction and that there is no need to
employ an iterative procedure for the structure
systems with loops. Higashi, et. al [10]
demonstrated that the reconstruction family of
a given slructure system is equivalent 1o the sel
of solutions of a special kind of fuzzy relation
equations. The partially ordered solution set
conlains the minimal solutions and the unigue
maximum  solution. Idenlifying these maxi-
mum and minimal elements only suffices to
determine the whole reconstruction family.



1.6 Motivation

In real life, there may be situations when
information is not available in its entirety, or it
may be cost prohibitive to observe all the states
in an experiment. For example, in genetics,
where there are dominant and recessive genes,
some states are readily observed whereas the
knowledge of others requires expensive test-
ing. Therefore, the task of working with lim-
ited information is of paramount concem in
these circumstances, It is the objective of this
paper to study such problems. In this paper, we
first present a method for determining the unbi-
ased reconstruction for possibilistic behavior
functions using partial information. Then we
describe an algorithm to determine the recon-
struction family of possibilistic systems. As
noted before, the problem of computing recon-
struction family of possibilistic systems can be
translated into the problem of solving a set of a
special kind of fuzzy relation equations f10].
We use this equivalence in solving the identifi-
cation problem.

2. Measures of Uncertainty for Possibilistic
Systems and Unbiased Reconstruction

Let B=(V, W, 5, A Q, f)bea possi-
bilistic behavior funclion as defined in (1.1).
Let § = (*B} be the reconstruction hypothesis
as defined in (1.2). All the symbols have the
same meaning as defined carlier except that the
functions f and { * f} are possibilistic behavior
functions. Similar to the probabilistic systems,
the possibilistic sysiems also satisfy covering
condition, irredundancy condition and local
consistency condition as defined in (1.4), (1.5)
and (1. 6) respectively. Let ZcV, then [ 1 2] is
the projection of a possibilistic function in that
it involves only those variables which are in set
Z. Formally, {f1Z] is defined as

Lz X s(vy={0, 1] (2.1a)

such that

[flz]= max f(a) . C (2.1b)
7 -3
A justification of this definition has been pro-
vided in {39-41].
Evaluation of the reconstruction hypothe-
ses Tor possibilistic systems relates to either of
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the following two problems, depending
whether or not the overall system is kno:
These two problems are the reconstructab;
problem and the identification problem, -
identification problem requires the compt
tion of the reconstruction family of B deng
by B (or Fy). To choose a single system fu.

uon fs from Fs requires some additio

assumptions, depending on whether some ex -
information about the overall system up.
investigation is available or not. In the event |

not having such information, f; should
maximally non-committal except for the f
lowing condition:

[fsd FV] = ‘fforallkeN,. (2

For a
amounts to saying that the set { f,(a) ! ae.

must have maximum entropy subject to t
above constraint. The principle of maximi

entropy is well established and has be
derived axiomatically as a general principle

inductive inference {11, 12, 35]. The princip
of maximum entropy determines a hypothetic
probability distribution from the available pi

tial information about a probability distrib

tion. This hypothetical distribution which co :
tains all the available information but 1
unsupported information and is unbiased ar
most likely to occur, is called the unbias. 5

reconstruction.
Higashi, et. al. [9] developed the pos:

bilistic counterpart of the principle of max

mum entropy in order to define a suitable me
sure of uncertainty. This measure, called 1
uncertainty, is computed as;

1!
U(f) = T‘Z‘i(llﬁ‘] _lk) logz ] C(f$!k+l)1 (2.3:
7 k=

or

probability distribution, ¢

I ‘

i :

U(f)=r j log | c(f,0)1dl (23t
fo

where f =(g; lie Niy,), I, =maxg;, L,

{ 11@ieN x)(g=l or 1=0 }
{tidy.o... el and c(f, 1)
{ieN,x, 1¢; 21}). The set L, is called a leve
sct of f, the function ¢ is called the /-cut func
tion and the set ¢(f,1) is called an /-cut of f
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As discussed previously, U-uncertainty serves
as a measure of uncertainty for possibilistic
systems which satisfies some additional prop-
erties beyond those satisfied by Shannon’s
entropy {34] and can be used to justify the
selection of a particular function™ from the
reconstruction family in the context of possi-
bilistic systems.

3.3 Reconstruction of Possibilistic Systems

We first define the concepts of null exten-
sion, minimal substate and partial reconstruc-
tion hypothesis. Then we describe a partial join
procedure in order to compute the unbiased
reconstruction from partial information.

Definition 3.1 Let 8 be a substate. Then ae A
is said to be a null extension of 8 if o > B
and every variable of a which does not
occur in S has a zero value.

Definition 3.2 Two substales are equivalent if
and only if they have same null extension.

Definition 3.3 There may be more than one
substate with the same null extension.
The one with the least function value is
said to be the minimal substate.

Definition 3.4 If the subsystems related to a
reconstruction hypothesis are not com-
plete then the hypothesis is said to be a
partial reconstruction hypothesis.

It is important to note that, in the context of
probabilistic reconstructability analysis, the
concept of null extension is used to generate
independent information. Two slates are said to
be equivalent if they are in the same equiva-
lence class. It sulfices to work with only inde-
pendent information. We must emphasize that
in the context of possibilistic reconstructability
analysis, the concept of a null exiension does
not necessarily gencrate independent informa-
tion. Rather, it provides a (ool to carry out
rcconstructability analysis in the absence of
complete information.

Corollary 3.1 : Let 'f and ?f be two péssi-

bilistic ~ behavior  functions such  that
XXX, -[0,1), and  2f: XaxX,—[0, 1],
Then their join 'f*2f is a function

f 2 X xXox X, —[0, 1] such that
('f*2fla, B,7)

= min[ ' fle, B), *F(B,7)] . (3.1
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Corollary 3.2: Let fy = : *f . Then f; is unbi-
ased reconstruction implicd by S.

Corollary 3.1 and 3.2 are due to [6]. Following
is the possibilistic version of the reconstruction
algorithm given by Jones [15].

3.3.1 Reconstruction Algorithm
Given a consistent reconstruction hypoth-

esis in the form of equations majr fla)=*f(p

for all * £(A) available. We obtain an unbiased
reconstruction fs, _ as follows.

[1] f(a) := 1 for all & in the system;

[2] for al* {( B)  available  do
fla):= fla)** f(B) where
fla)y**£(B) = min [f(a | g),* £(B))

~=min [f(&),* f(B)];

31 fs,. .= f fsp., 18 an unbiased recon-
struction for the available information:

[4] stop.

We illustrate above algorithm uvsing the follow-
ing reconstruction hypothesis { { v, , vl v

vl {vi.vi]}. _

vi e P v ow By By
0 0 08 0 0 08 O 0 0.8
0 1 05 0 1 07 0 1 07
I 0 00 1 0 08 I 0 08
1 1 0.8 I 1 053 I 1 05

Following are the equivalence classes for the
above reconstruction hypothesis,

Equivalence Null

Class Extn

(1O, 20, 2y, 200y, B0y, Bom 000
(3D, 2on, on} 001

{ 3D, 01), ®(10)) 010

{ 1), *(10), P(10)) 100

{ P11y} 101

{ 2a11)) 110

{ BUany 011

() 11

Choosing the minimal element from ecach
equivalence class (if there are more than one




minimal elements then choosin% any one of
them), we get Sp,.0 = { 12(00), BOD), 2(01),
211, 210y, *(11), (1)) "The unbiased
reconstruction determined by the above algo-
rithm  is  (f(000) = 0.8, f001)=0.7,
f010)=0.5, f(011)=0.5, F(100)=0.0,
S0 =0.0, £(110)=0.8, f(111)=0.5).

3.3.2 Proof of the Reconstruction Algorithm

We state, in view of Corollary 3.1 and
3.2, that the algorithm considers only the given
information and no additional information.
Thus, the algorithm computes the unbjased
reconstruction for the information employed.
Then fs, = is an unbiased reconstruction
implicd solely by Sp,..;. However, we cannot
say if' fy is the unbiased reconstruction for the
whole system. Also, choosing minimal substate
for cach equivalence class does not necessarily
guaranty maximum uncertainty reconstruction
though it certainly provides a better resolution
of the system being reconstructed. Now we
prove that fg, - is the unbiased reconstruction
solely implied by S p,, ...

Definition 3.5: Let F={(f1 f: A>|0, 11}.
Let < denole a partial ordering in F such that
for cach pair f}, fhe F, f, < f, , if and only if
NHia) £ fole) forall e A.

Given a partial reconstruction hypothesis
S panisr WC assert that the reconstruclion family
of Spuni Fs,, . has a unique maximum
S$poma With respect to partial ordering < which
can bhe determined by fg =¥ YF(B) for

“FUB) in Spay. Similar to Higashi, et al,
[10], let feFg, .. Then

Sty <min ' f(ad 7V) for all & and for all
/

Tftad 7VY in Spu. On the other hand, let

there be  some - ayeA such  that

fleg) > min/ flagd V). Then there exists
J

some  fof in S partial such  that
fla) > P flagd V) |, which contradicts the
very definition of projection function in possi-
bilistic  systems.  Thus feFg, .. Thus
fe F.S'pm;:f S fspoyr Now, f< fsPa,m=>
max fla) <max fg, (a) for all ‘g in

a> fx a> ta
Sf’rlrm-lf' or

fay <y fd TVidia) (3.2)
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forall ‘e e 7Ain Sp, .

For some @eA such that a>ig
fste)y=min' f('a) </ f(/a) for all ‘ne iy
N Spaia: S0 fy()<U f(Jar). By
[fsd VI @) = max fo(e) < fsla) < f( )
Therefore,

Uspwrd ViU ST 00y, 33
From  (32) and (3.3) ,
spsad VI @y =7 fig) establishing

SSpurias€ Fspyuy- This concludes the proof of
the following theorem.

Theorem : If Fs,. ., 1S non-empty , then
Fs, ... has a uvnique maximum FSrany With
respect to partial ordering < which can be
determined by using partial join as described
by the reconstruction algorithm,

3.4 Reconstruction Families of Possibilistic
Systems

A reconstruction family of a given struc-
ture system can be considered equivalent to the
sct of solutions of a special type of fuzzy rela-
tion equations . The solution set thus obtained
is partially ordered and contains both minimal
solutions and wvnique maximum solutions, It
sulfices only to identify the maximum and
minimal elements in order to determine the
whole reconstruction family. This was the idea
used by Higashi, et. al. [10] in identifying the
reconstruction family of possibilistic systems.
In this section, we extend the research on the
same line by providing a method for partial
reconstruction hypotheses.

A possibilistic measure is a special kind
of fuzzy measure which is applicable only to
finite sets and some special types of infinite
sets {10, 32, 36]. However, we are concerned
here with finite sets only. Let S Pamia D€ @ par-
tial reconstruction hypothesis. Then al] func-
tions fe F,.. €an be determined by solving
the set of simultaneous equations

max f(a) =1 f(/a) (4.12)
a> e
for all & in the system and forall ‘o in S parials
along with the constraint

0< fla) <1, (4.1b)




Equation {4.1a) can be expressed as
max min(f (@), 8, 1) =/ f(Ja) (4.23)

for all @€ A and ‘o in §p, 5y, Where

life>/e
5,,' = (4.2b)
0 otherwise,

This problem can now be translated in terms of
fuzzy relation equations as follows. Let p, g
and r be fuzzy binary relations defined as
p: XxY-[0,1], q: YxZ—{0,1), and
r: XxZ-3[0, 1], and let *“ 0" be max-min com-
position [7, 8, 10, 33]. Then, the general form
of a fuzzy relation equation can be written as

pog=r. (4.3)
Thus, for all xe X and ze Z,
pog(x,z) = sup min(p(x,y).q(y,2)). (4.4)

¥s

Because X, Y and Z are {inite sets, functions p,
g, and r can be mapped onto their respective
matrices. That is, rP= (pu), qg= (q]k) and
r={(rg), where p; = p(x;,y)), qp=q(y;,z)

and ry = r(x;, z;), and x;€ X, yieYand ze Z,
Now for each pair (i k) we can write

Py = m;dx min(py, q;k) . (4.5)

Now we define
P=(pypoe s pa) pi = flay),ie Ny ,(4.6a)

i qn q12 q11p,1
421 qxn q21p,1
Q0= : : sl : (4.6b)
L drarr qrann diAlip,0 |
where ‘
Py= { PF(B)2f(B),.. ., ‘f(ﬁiP,[) }, (4.6¢)
lifo; >* B
Qi = (4.6d)
0 otherwise

and
"=("1"’2a---,fu=,t). (4.6e)

Note that *f are subsystem functions in P,.
£quation (4. 2a) can now be rewritten as

max min(p;, g ) = r, (4.7a)
ie Ny
for all ke N, », which essentially is
pO=r. (4.7b)

Now for the given example, we have the fol-
lowing representation of p, 0 =r,

[PO"P% Py Pn Pss Pi Ps. P7]0

(1 0 0 0 0 0 0]
01 0000 0
0010000
1 00100 0 _
0000100 -
001 ! 01t of
01 000 0 1
00600 1 1 1

[0.8, 0.0, 0.5, 0.7, 0.8, 0.5, 0.5].

The system of equations given above can
further be simplified by climinating those
columns from Q which correspond to 0 values
in r-vector. The sclution to the above set of
equations is po=0.8, py=0.7, ps=0.0,
ps=0.0, ps=0.8, p;=0.5 and either
P2=0.5 and p;<0.5 or p;=0.5 and
P2 £0.5. Obviously, the reconstruction family
has infinite number of clements. Only one of
them is maximum represented by p, = 0.5 and
p3=0.5. Two of them arc minimal elements
represented by p,=0.0 and p; =0.5, and
P2 =0.5 andp3 = (1, 0.

5. Concluding Remarks

The very importance of system recon-
struction dwells in its ability to identifying the
important components during the process of
system reconstruction, Klir [25] introduced the
reconstruction principle of inductive inference.
The process of inductive inference can be car-
ried out in several phascs. In the first phase, an



overall constraint is derived from the available
data. In the subsequent phases, superior recon-
struction hypotheses can be determined for the
overall system at the various refinement levels.
As stated earlier, this novel principle of induc-
tive inference, embedded in the reconstruction
process, has successfully been applied to the
diverse fields such as generalized rule induc-
tion, expert systems, pattern classifications and
distributed sensor integration [22, 25, 36].

In this paper we have attempted to
strengthen this principle by extending the
realm of RA for possibilistic systems with
incomplete information. We have proposed a
reconstruction algorithm to this effect which
computed the unbiased reconstruction for the
available information. Further, we have
expressed the problem of determining  the
reconstruction family from a partial reconstrue-
tion hypothesis in terms of max-min fuzzy
relation equations. Matrix O is in the form of a
lower triangular matrix which can further be
compressed by eliminaling the columns corre-
sponding o zero values in the r-vector, This
greatly simplifics the computation. Details of
this max-min approach are listed in Higashi, et.
al. [ 10].
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